

Seismic stability of steel moment resisting frames: recent findings and implementation in design standards

Dimitrios G. Lignos, PhD, dip. Ing., SIA Full Professor, Chair, Civil Engineering Institute, Director of Resilient Steel Structures Laboratory École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

 École polytechnique fédérale de Lausanne

May 21, 2024

EPFL Acknowledgements

- Institute for Steel Development and Growth
- Indian Institute of Technology, Roorkee
- Swiss National Science Foundation

SWISS NATIONAL SCIENCE FOUNDATION

Nippon Steel Corporation

EPFL Acknowledgements (2)

✓ Ahmed Elkady, PhD, McGill University Assistant Professor University of Southampton, UK

✓ Yusuke Suzuki, PhD, McGill University Senior Manager, Nippon Steel Corporation, Japan

✓ Hammad El Jisr, PhD, EPFL Structural Engineer, INGPHI, Switzerland

✓ Andronikos Skiadopoulos, PhD, EPFL Post-doctoral scientist, Stanford University, USA

EPFL Earthquakes worldwide

@BGS earthquake seismology

@the Guardian (Central Italy)

Key statistics worldwide Human Casualties: 28'000 / year

Displaced Population: 317'500 / year

Source: UN Office for Disaster Risk Reduction

EPFL Underlying physics

External
forceInertia
forcesDamping
forcesRestoring
forces
$$-m\ddot{u}_g(t) = m\ddot{u}(t) + \mathbf{f}_D(\mathbf{u}, \dot{\mathbf{u}}) + \mathbf{f}_S(\mathbf{u}, \dot{\mathbf{u}})$$
 $+\mathbf{f}_S(\mathbf{u}, \dot{\mathbf{u}})$ $+\mathbf{f}_S(\mathbf{u}, \dot{\mathbf{u}})$

Primary challenges in simulating collapse:

- Material nonlinearity
- Nonlinear geometric instabilities (\rightarrow softening)
- Scarcity of available data at large deformations

EPFL Resilient Steel Structures Lab @ EPFL in a nutshell

Multi-scale experimentation

Contributions to international standards EPFL

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

SWISS NATIONAL SCIENCE FOUNDATION

EPFL Our focus for today: Steel moment frames

Image courtesy of Prof. M. Engelhardt

EPFL Steel moment frames

-Primary structural elements (our focus for today)

Steel columns

Panel zones

Composite effects

Images @Prof. Lignos

EPFL Motivation: Steel moment frames

- Design considerations: primarily based on cyclic tests from pre-qualified moment connections (after Northridge 1994).
- Emphasis was mostly on connection performance up to a lateral drift ratio of 4% rad.
- Stiffness typically controls column design to achieve the target design drifts.
- Often deep (d > 400mm) and slender members are commonly used (weight consideration).

Image courtesy of Prof. M. Engelhardt

EPFL Beam-to-column connections

-Key performance aspects

Image courtesy of Prof. M. Engelhardt

Chord Rotation, θ [rad]

EPFL Key aspects on steel column demands

Zhang and Ricles (2006)

Inamasu, Kanvinde and Lignos (2019)

EPFL System behavior to earthquake-induced collapse

Source: E-Defense 2013
Prof. Dimitrios G. Lignos, EPFL - Seismic stability of steel moment resisting frames

EPFL Available experiments on steel columns (till 2010)

RESEARCHER	SECTION SIZE	P/P_y	LATERAL LOAD	
Popov et al. (1975)	W8x24 W8x48	0.3 ~ 0.80	Cyclic	
MacRae et al. (1990)	250 UC 73 (W10x49)	0.0 ~ 0.80	Cyclic	
Nakashima et al. (1991)	W4x13 W5x19 W6x9	0.0 ~ 0.60	Monotonic	
Newell and Uang (2006)	W14x132 W14x176 W14x233	0.0 ~ 0.75	Cyclic	

EPFL Testing matrix for full-scale column testing

Section	Steel	b /2t	h /t	Loading	Number of
Size	Туре			Scheme	Specimens
W14x53		6.1	34.1	Cyclic/Unidirectional	6
W14x61	A992	7.7	33.7	Cyclic/Unidirectional	6
W14x82	Gr. 50	5.9	24.6	Cyclic/Unidirectional	6
W16x89	(Equiv.	5.92	27	Cyclic/Unidirectional	6
W24x84	S355)	5.9	45.9	Cyclic/Unidirectional/Bidirectional	4
W24x146		5.9	38.0	Cyclic/Unidirectional/Bidirectional	6
HSS-250x9.5	ASTM A500	26.7		Cyclic/Uniaxial	6
HSS-300x16	F _y =400MPa	19.0		Cyclic/Uniaxial	6

EPFL Full-scale steel column experiment

EPFL A closer view of column axial shortening

EPFL Effect of cross-sectional shape

-The issue of column axial shortening

Suzuki and Lignos (2015)

EPFL Observations from field reconnaissance

-2017 Puebla-Morelos earthquake, Mexico City

Fixed-end column base

4 days after the earthquake

Complete Squashing

Residual story drift was nearly zero!

Tapia-Hernández and García-Carrera (2020) ENSINE RESSLAD SWISS NATIONAL SCIENCE FOUNDATION

EPFL Implications on weld demands & weld details

- (Suzuki and Lignos, 2021)
- *Suzuki, Y., Lignos, D.G. (2021). "*Experimental Evaluation of Steel Columns under Seismic Hazard-Consistent Collapse Loading Protocols*, ASCE Journal of Structural Engineering, Vol. 147(4), pp. 04021020, doi: 10.1061/(ASCE)ST.1943-541X.00022963

EPFL Selected experimental findings

-Influence of loading history

*Suzuki, Y., Lignos, D.G. (2021). "Experimental Evaluation of Steel Columns under Seismic Hazard-Consistent Collapse Loading Protocols, ASCE Journal of Structural Engineering, Vol. 147(4), pp. 04021020, doi: 10.1061/(ASCE)ST.1943-541X.00022963

EPFL Effect of axial load (Variable versus constant axial load)

EPFL Effect of axial load (Variable versus constant axial load)

Source: Suzuki and Lignos (2021)

EPFL Validated continuum finite element models

Source: Elkady and Lignos (2018)

EPFL Continuum finite element model specifics

Source: Elkady and Lignos (2018)*

*Elkady, A., Lignos, D.G. (2018). "Improved Seismic Design and Nonlinear Modeling Recommendations for Wide-Flange Steel Columns", ASCE Journal of Structural Engineering, doi: 10.1061/(ASCE)ST.1943-541X.0002166

Hartloper, A., de Castro e Sousa, A., and Lignos, D. G. (2021). "Constitutive Modeling of Structural Steels: Nonlinear Isotropic/Kinematic Hardening Material Model and Its Calibration." ASCE Journal of Structural Engineering. Vol. 147(4), pp. 04021031.

EPFL Continuum finite element parametric simulations

-Proposed design recommendations

Source: Elkady and Lignos (2018)

- Proposed reduction to 2/3 of the current web compactness limit as per AISC-341-16 for first story steel columns
- Impose an upper limit of 30% on gravity induced axial load ratio for first story steel columns in type D MRFs (adopted in CSA S16)

EPFL Proposed design recommendations for steel columns -Adopted in new Eurocode 8 EN1998:2023-1-2

Wide flange or HSS

Suzuki and Lignos (2015)

Encased, partially encased or filled composite

Farahi et al. (2022)

EPFL Panel zone joint: Behavior & design models

Krawinkler et al. (1971)

EPFL Elastic versus inelastic panel zone design

@ Shin and Engelhardt (2013), NSF funded project at University of Minnesota

EPFL Missing aspects to leverage shear yielding

-Limitations of current design models

Main assumptions:

- K_e: Only shear deformations are considered
- V_{v} : Uniform panel zone yielding
- V_p : Valid until $4\gamma_v$ for flange thicknesses less than 40 mm

EPFL Review of test data on Post-Northridge connections

 γ_{v} : panel zone shear distortions at yield

 γ_{max} : maximum experimental panel zone shear distortions

Skiadopoulos, A., and Lignos, D. G. (2021). "Development of inelastic panel zone database." Journal of Structural Engineering, American Society of Civil Engineers, 147(4), 04721001

EPFL Assessment of available panel zone models

-Panel zone stiffness

Skiadopoulos, A., Elkady, A., and Lignos, D. G. (2021). "Proposed panel zone model for seismic design of steel moment-resisting frames." *Journal of Structural Engineering*, American Society of Civil Engineers, 147(4), 04021006. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002935.

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

Swiss National Science Foundation

EPFL Assessment of available panel zone models

-Panel zone shear resistance

(Data source: Kim et al. 2015)

 $V_{p,m}$: Measured from available tests

Skiadopoulos, A., Elkady, A., and Lignos, D. G. (2021). "Proposed panel zone model for seismic design of steel moment-resisting frames." *Journal of Structural Engineering*, American Society of Civil Engineers, 147(4), 04021006. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002935.

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

FNSNF RESSLab 33 Swiss National Science Foundation

EPFL A fresh look into the problem

Skiadopoulos and Lignos (2021) (Data source: Shin and Engelhardt 2013)

EPFL Proposed panel zone model

-Proposed expression for panel zone stiffness

Skiadopoulos, A., Elkady, A., and Lignos, D. G. (2021). "Proposed panel zone model for seismic design of steel moment-resisting frames." *Journal of Structural Engineering*, American Society of Civil Engineers, 147(4), 04021006. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002935.

EPFL Proposed panel zone model

-Panel zone strength

Skiadopoulos, A., Elkady, A., and Lignos, D. G. (2021). "Proposed panel zone model for seismic design of steel moment-resisting frames." *Journal of Structural Engineering*, American Society of Civil Engineers, 147(4), 04021006. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002935.

Proposed model (adopted in CSA-S19 & EC8 Part 1) EPFL

-Proposed expression for panel zone shear strength

$$V_{r} = 0.61a_{c}\phi f_{yc} \left\{ \underbrace{\left(d_{c} - t_{cf}\right)t_{pz}}_{\text{web contribution}} + \begin{bmatrix} 1.69\underbrace{\left(\frac{K_{f}}{K_{e}}\right) + 0.027}_{\text{flange contribution}}\right] \begin{pmatrix} b_{cf} - t_{pz} \end{pmatrix} t_{cf} \right\}$$

For
$$\frac{P}{P_y} \le 0.4$$
 $a_c = 1.0$
For $\frac{P}{P_y} > 0.4$ $a_c = \sqrt{1 - \left(\frac{P}{P_y}\right)}$

 K_f/K_e = column flange-to-panel zone stiffness ratio and shall be computed as follows:

2

$$K_f = \frac{2Eb_{cf}t_{cf}^3}{d_b^2 + 2(1+v)t_{cf}^2}, \qquad K_e = \frac{12Et_{pz}(d_c - t_{cf})I_c}{t_{pz}(d_c - t_{cf})d_b^2 + 24(1+v)I_c}$$

Skiadopoulos, A., Elkady, A., and Lignos, D. G. (2021). "Proposed panel zone model for seismic design of steel moment-resisting frames." Journal of Structural Engineering, American Society of Civil Engineers, 147(4), 04021006. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002935.

EPFL Comparisons with current model and available data

Skiadopoulos, A., Elkady, A., and Lignos, D. G. (2021). "Proposed panel zone model for seismic design of steel moment-resisting frames." *Journal of Structural Engineering*, American Society of Civil Engineers, 147(4), 04021006. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002935.

(2022 Raymond Reese Award, American Society of Civil Engineers)
 Adopted in second revision of Eurocode 8 Part 3 and CSA S16
 Prof. Dimitrios G. Lignos, EPFL - Seismic stability of steel moment resisting frames

EPFL Development of simplified weld details

-Welded connections with highly inelastic panel zones

Skiadopoulos and Lignos (2022)

EPFL Development of simplified weld details

-Fracture mechanics-based simulations

Skiadopoulos, A., and Lignos, D. G. (2022). "Proposed backing bar detail in welded beam-to-column connections for seismic applications." *Journal of Structural Engineering*, American Society of Civil Engineers, 148(8), 04022102. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003374

EPFL Full-scale cyclic tests

-Welded connections with highly dissipative panel zones & simplified weld details

- Stable hysteretic response through panel zone yielding $\gamma_{max} = 15\gamma_y$ at 4% rad
- Prevent beam local buckling prior to lateral drift demands of 5% rad
- Beveled backing bars left intentionally in place

EPFL Full-scale cyclic tests

-Test setup

Skiadopoulos et al. (2023)

Skiadopoulos, A., Lignos, D. G., Arita., M., Hiroshima, S. (2023). "Full-scale experiments of cyclically loaded welded moment connections with highly dissipative panel zones and simplified weld details." *Journal of Structural Engineering*, American Society of Civil Engineers, 149(12), 04023167.

EPFL Full-scale cyclic tests

-Indicative test results

Skiadopoulos et al. (2023)

EPFL Archetype steel moment frames

32 steel buildings designed and analyzed

- Design location: Urban California
- 4-, 8-, 12-, and 20-story buildings
- Three-, and five-bays considered
- Variable panel zone targeted distortions: $\gamma_d = [1, 4, 10, 15]\gamma_y$

32 design summaries available at:

Elastic design

EPFL Modeling approach for steel moment frames

Skiadopoulos, A., and Lignos, D. G. (2022). "Seismic demands of steel moment resisting frames with inelastic beam-to-column web panel zones." *Earthquake Engineering & Structural Dynamics*, Wiley. DOI: https://doi.org/10.1002/eqe.3629

EPFL Nonlinear dynamic analyses results

-Collapse risk evaluation: set of 44 far-field ground motions of FEMA P695

Skiadopoulos, A., and Lignos, D. G. (2022). "Seismic demands of steel moment resisting frames with inelastic beam-to-column web panel zones." *Earthquake Engineering & Structural Dynamics*, Wiley. DOI: https://doi.org/10.1002/eqe.3629

EPFL Influence of panel zone design on residual story drift

-Residual story drift hazard curves

Skiadopoulos, A., and Lignos, D. G. (2022). "Seismic demands of steel moment resisting frames with inelastic beam-to-column web panel zones." *Earthquake Engineering & Structural Dynamics*, Wiley. DOI: https://doi.org/10.1002/eqe.3629

EPFL Influence of panel zone design on residual story drift

-Design basis earthquake (10% / 50 years)

Skiadopoulos, A., and Lignos, D. G. (2022). "Seismic demands of steel moment resisting frames with inelastic beam-to-column web panel zones." *Earthquake Engineering & Structural Dynamics*, Wiley. DOI: https://doi.org/10.1002/eqe.3629

EPFL Composite-steel moment resisting frames

Images courtesy of D. Lignos

- Enhanced lateral stiffness and strength due to composite action
- Potentially lighter steel designs for higher degrees of composite action

EPFL What is the 'right' effective width?

⁽El Jisr and Lignos, 2019)

EPFL Strength of shear connectors

Image courtesy of Prof. D. Lignos

@EN 1994-1-1 Annex D (2004)

- In seismic applications: additional 25% reduction regardless of the beam depth
- Headed shear connectors to be ductile $(h_D \ge 4d)$
- Deformability $\delta_{uk} \ge 6mm$

EPFL Ductility requirements for controlling concrete crushing within a dissipative zone

Fully Composite Beam $\frac{1}{N} \cdot \frac{1}{N} \cdot \frac{1}$ L[mm] z/d Limit q IPE270 IPE300 IPE330 IPE360 IPE400 IPE450 IPE500 IPE550 5000 0.336 0.317 0.315 0.345 0.387 0.414 0.439 0.457 0.50 6000 0 332 0.313 0.297 0.284 0.332 0.368 0.400 0.424 0.50 1.5 7000 0.327 0.309 0.294 0.281 0.277 0.323 0.361 0.391 0.50 8000 0.322 0.305 0.290 0.278 0.262 0.277 0.322 0.358 0.50 9000 0.318 0.301 0.287 0.275 0.242 0.284 0.325 0.50 0.259 5000 0.336 0.315 0.345 0.439 0.457 0.43 0.317 0.387 0.414 6000 0.332 0.313 0.297 0.284 0.332 0.368 0.400 0.424 0.43 2 7000 0.327 0.309 0.294 0.281 0.277 0.323 0.361 0.391 0.43 $\frac{x_{pl}^{+}}{h} \leq \frac{\varepsilon_{cu}}{\varepsilon_{cu} + q \cdot \varepsilon_{v}}$ 8000 0.322 0.305 0.290 0.278 0.262 0.277 0.322 0.358 0.43 Not 9000 0.318 0.301 0.287 0.275 0 2 5 9 0.242 0.284 0.325 0 43 5000 0.336 0.317 0.315 0.345 0.387 0.414 0.439 0.457 0.30 6000 0.332 0.313 0.284 0.368 0.400 0.424 0.30 0.297 0.332 allowed 3.5 7000 0.327 0.309 0.294 0.281 0.277 0.323 0.361 0.391 0.30 8000 0.322 0.305 0.290 0.278 0.262 0.277 0.322 0.358 0.30 9000 0 318 0.301 0.275 0.284 0.325 0.30 0.287 0.259 0.242 5000 0.336 0.317 0.315 0.345 0.387 0.414 0.439 0.457 0.21 6000 0.332 0.313 0.297 0.284 0.332 0.368 0.400 0.424 0.21 • In current provisions, assumed $\varepsilon_{c\mu} = 0,0025$ 5.5 7000 0.327 0.309 0.294 0.281 0.277 0.323 0.361 0.391 0.21 8000 0 322 0.305 0 2 9 0 0.278 0 262 0 277 0.322 0.358 0.21 9000 0.318 0.301 0 287 0.275 0 2 5 9 0 242 0.284 0.325 0.21 5000 0 3 3 6 0.317 0.315 0.345 0.387 0.414 0.439 0.457 0.19 6000 0.332 0.313 0.424 0.297 0.284 0.332 0.368 0.400 0.19 6.5 7000 0 327 0 309 0 2 9 4 0 281 0 277 0 323 0 361 0.391 0 1 9

8000

9000

0.322

0.318

0 305

0.301

0 2 9 0

0.287

0 278

0.275

0 262

0.259

0 277

0.242

0.322

0.284

Current EN1998-1-1 (Chapter 11)

• Very restrictive for seismic designs of composite steel MRFs with q > 2

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

0.358

0.325

0.19

0.19

EPFL Overview of prototype building

- 2-bay composite-steel MRFs (S355J2 steel, C25)
- Site Class D, a_g=0.22g
- Design location: Sion (CH), Katerini (GR), Braila (RO), Rimini (IT)
- Degree of composite action, n = 80%
- Assumed, strength reduction factor, q = 3
- 25% reduction in shear stud resistance is waived
- Stiffened end-plate beam-to-column connections
- Fabrication: EXC2 according to EN1090-2

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

EPFL Test structure @ EPFL

EPFL Test structure after setup completion

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

Image courtesy of D. Lignos

EPFL Test structure after setup completion (2)

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

Image courtesy of D. Lignos

EPFL Instrumentation

- Digital image correlation system (8 cameras) to track strains on the slab surface
- LUNA: fiber optic cables for continuous strain measurements on steel reinforcement
- LED Wireless tracking system for displacement tracking
- Conventional instrumentation: About 360 other sensors

(El Jisr and Lignos, 2020)

EPFL Employed loading protocols

- AISC symmetric cyclic protocol (to evaluate pre-qualification)
- SAC near fault protocol (prototype design location near fault)
- Collapse-consistent protocol to mimic "ratcheting" prior to structural collapse
 (El Jisr and Lignos, 2020)

EPFL Selected experimental findings

-AISC loading protocol

EPFL Seismic performance of composite-steel moment frames

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

(El Jisr and Lignos, 2020)

60

SWISS NATIONAL SCIENCE FOUNDATION

EPFL Slab effective width

Proposed value according to AISC-2016 (adopted in New Eurocode 8 Part 1-2)

Digitized section cut in composite beams

⁽El Jisr and Lignos, 2021)

EPFL Revised ductility requirements for composite-steel beams

• Revised limit for confined concrete crushing, $\varepsilon_{cu} = 4,5\%$

(El Jisr and Lignos, 2021)

EPFL Behavior of shear stud connectors

⁽El Jisr and Lignos, 2021)

EPFL Behavior of shear stud connectors

-slab cut along the beam length (after the end of test)

(El Jisr and Lignos, 2021)

(El Jisr and Lignos, 2021)

EPFL Shear connectors in composite moment frames

-Section cuts after end of testing and design recommendations

(El Jisr and Lignos, 2021)

■ For composite beams with $d_b \le 500mm$: →25% reduction on shear resistance is waived (adopted in EC8 Part 1-2)

EPFL EC8 Webinars program (https://ec8webinars.org/webinars/#webinars)

Webinar 1-2.4: Composite Steel-Concrete Buildings

Speaker: Dimitrios Lignos

Video: open in Youtube

Presentation slides: open view

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

Link to all seminars

https://ec8webinars.org/recorded-webinars/#webinar-1-2

Link for composite-steel concrete frames

https://www.youtube.com/watch?v=5S3dCmijtg4

EPFL Practice-oriented models for seismic assessment

© 2005 CEN All rights of explortation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 1998-3:2005: E

EPFL Current Eurocode 8 – Part 3

Resistance & deformation models for assessment (steel beams & columns)

 Table B.1: Plastic rotation capacity at the end of beams or columns with dimensionless axial load v not greater than 0,30.

	Limit State		
Class of cross section	DL	SD	NC
1	1,0 <i>θ</i> y	6,0 <i>Ө</i> у	8,0 <i>θ</i> y
2	0,25 θ _y	2,0 θ _y	3,0 <i>θ</i> _y

@EN1998-3

EPFL Current Eurocode 8 – Part 3

Evaluation of deformation models for assessment (steel beams)

Cantilever steel beam test data (D'Aniello et al. 2012)

EPFL Material and structural performance databases

-over 1500 collected experiments

Material scale (over 10 steel grades)

Hartloper et al. (2023)

Hollow structural steel columns

Lignos and Krawinkler (2010)

Steel beam-to-column joints

Lignos and Krawinkler (2011) Steel braces (HSS, round HSS, I-shaped)

Karamanci and Lignos (2014)

I- H- shaped steel columns

Elkady and Lignos (2018)

Beam-to-column web panel

Skiadopoulos and Lignos (2021)

FNSNF RESSLab 71

SWISS NATIONAL SCIENCE FOUNDATION

EPFL Resistance & deformation models for assessment

EPFL Resistance & deformation models

I- and H-shaped steel columns

 Q_{u}^{*} Q_{u}^{*} Q_{y}^{*} Q_{r}^{*} Q_{r}^{*} Q_{r}^{*} $\delta_{y} \delta_{u}$ δ_{c}^{pl} δ_{c}^{pl}

Resistance models

$$\begin{split} M_y^* &= 1,15\omega_{\rm rm} \left(1 - \frac{N_{\rm Ed,G}}{\chi_z N_{\rm Rk}/\gamma_{\rm M1}}\right) \chi_{\rm LT} M_{y,\rm Rk}/\gamma_{\rm M1} \\ M_u^* &= M_y^* + a_h K_{\rm e} \theta_{\rm u}^{\rm pl} \end{split}$$

Deformation models

$$\delta_{u}^{pl} = 7,37 \left(\frac{h}{t_{w}}\right)^{-0.95} \left(\frac{L_{b}}{i_{z}}\right)^{-0.5} \left(1 - \frac{N_{Ed,G}}{N_{pl,e}}\right)^{2.4} \le 0,15rad \ (COV = 0.38)$$

$$\delta_{c}^{pl} = 20 \left(\frac{h}{t_{w}}\right)^{-0.9} \left(\frac{L_{b}}{i_{z}}\right)^{-0.5} \left(1 - \frac{N_{Ed,G}}{N_{pl,e}}\right)^{3.4} \le 0,07rad \quad (COV = 0.42)$$

Source: Lignos et al. (2019)

EPFL Proposed resistance models for assessment

-Typical steel beam

Cantilever steel beam test data (D'Aniello et al. 2012)

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

EPFL EC8 Webinars program (https://ec8webinars.org/webinars/#webinars)

WEBINAR 3: Assessment and retrofitting of buildings and bridges

Webinar 3.4: Assessment and retrofit of steel structures

Speaker: Dimitrios Lignos

Video: open in Youtube

Presentation slides: open view

Prof. Dimitrios G. Lignos, EPFL – Seismic stability of steel moment resisting frames

Link to all seminars

https://ec8webinars.org/recorded-webinars/#webinar-1-2

Link for Clause 9 of EC8 Part 3 (seismic assessment)

https://www.youtube.com/watch?v=3IZPHQfkB0Y

EPFL Summary and conclusions

Seismic stability of steel columns:

- Axial shortening, coupled instabilities
- Proposed limits on compressive axial load ratio & web slenderness
- Influence of loading history (subduction versus near fault)
- Beam-to-column web panel zone joints:
 - Existing models do not work well with columns having thick flanges (>40mm) and beam-to-column depth ratios larger than 1
 - Proposed model for design: addresses all previous limitations

• Composite effects for seismic action:

- Additional 25% reduction on shear resistance can be waived for beam depths smaller than 500mm
- New recommendations for effective width
- Practice-oriented models for seismic assessment of existing structures:
 - New Chapter 9 in Eurocode 8 Part 3 (second generation of Eurocodes)
 - Revisions on columns in ASCE-41 (2023 version)

Thank you very much for your kind attention!

dimitrios.lignos@epfl.ch

 École polytechnique fédérale de Lausanne